skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fanah, Selorm_Joy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract With the aid of neutron diffraction and electrochemical impedance spectroscopy, we have demonstrated the effect of the increase in lithium concentration and distribution on Li‐ion conductivity. This has been done through the synthesis of a layered oxide Li2(La0.75Li0.25)(Ta1.5Ti0.5)O7, with the so‐called Ruddlesden‐Popper type structure, where bilayer stacks of (Ta/Ti)O6octahedra are separated by lithium ions, located in inter‐stack spaces. There are also intra‐stack spaces that are occupied by a mixture of La and Li, as confirmed by neutron diffraction. The distribution of lithium over both inter‐ and intra‐stack positions leads to the enhancement of Li‐ion conductivity in Li2(La0.75Li0.25)(Ta1.5Ti0.5)O7compared to Li2La(TaTi)O7, which has a lower concentration of lithium ions, located only in inter‐stack spaces. The analyses of real and imaginary components of electrochemical impedance data confirm the enhanced mobility of ions in Li2(La0.75Li0.25)(Ta1.5Ti0.5)O7. While the Li‐ion conductivity needs further improvement for practical applications, the success of the strategy implemented in this work offers a useful methodology for the design of layered ionic conductors. 
    more » « less